
Week 9 - Friday

 What did we talk about last time?
 Subset sum
 Knapsack

 Consider the following sequence, which should be read from left
to right, starting at the top row

1
1 1
2 1

1 2 1 1
1 1 1 2 2 1

 What are the next two rows in the sequence?

 Items (wi, vi):
 (7, 9)
 (3, 4)
 (2, 3)
 (6, 2)
 (4, 5)
 (5, 7)

 Maximum weight: 10
 Create the table to find all of the optimal values that include items

1, 2,…, i for every possible weight w up to 10

i wi vi 0 1 2 3 4 5 6 7 8 9 10

0 0 0

1 7 9

2 3 4

3 2 3

4 6 2

5 4 5

6 5 7

 "long jeverdy" → "longevity"
 What is the distance?
 LONG JEVERDY
 LONG--EVI-TY

 Or what if we want no mismatches?
 LONG JEV-ERD-Y

 LONG--EVI---TY

 It can be used in a spell-checker (or auto-correct) to suggest
similar words

 There are applications in DNA analysis:
 How different is this sequence from that sequence?

 We want a general metric for handling both gaps and
mismatches

 An alignment is a list of matches between characters in strings
X and Y that doesn't cross

 Consider:
 stop-
 -tops

 This alignment is (2,1), (3,2), (4,3)

 Some optimal alignment will have the lowest cost
 Cost:
 Gap penalty δ > 0, for every gap
 Mismatch cost αpq for aligning p with q
▪ αpp is presumably 0 but does not have to be

 Total cost is the sum of the gap penalties and mismatch costs

 We always try to think backwards when doing dynamic
programming

 Let strings X and Y have length m and n, respectively
 In the optimal alignment M, either characters m and n are

matched, or they're not
 In other words, at least one of the following is true:

1. (m,n) is in M
2. The mth position of X is not matched
3. The nth position of Y is not matched

 Let OPT(i, j) be the minimum cost of an alignment of the first i
characters in X to the first j characters in Y

 In case 1, we would have to pay a matching cost of matching
the character at i to j

 In cases 2 and 3, you will pay a gap penalty

OPT 𝑖𝑖, 𝑗𝑗 = min�
𝛼𝛼𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗 + OPT 𝑖𝑖 − 1, 𝑗𝑗 − 1

𝛿𝛿 + OPT 𝑖𝑖 − 1, 𝑗𝑗
𝛿𝛿 + OPT 𝑖𝑖, 𝑗𝑗 − 1

 We do our usual thing
 Build up a table of values with m + 1 rows and n + 1 columns
 In row o, column j has value jδ to build up strings from the

empty string
 In column o, row i has value iδ to build up strings from the

empty string
 The other entries (i,j) can be computed from (i -1, j – 1), (i – 1,

j), (i, j – 1)

 Create array A[0...m][0...n]
 For i from 0 to m
 Set A[i][0]= iδ

 For j from 0 to n
 Set A[0][j]= jδ

 For i from 1 to m
 For j from 1 to n

▪ Set A[i][j]= min(𝛼𝛼𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗+A[i-1][j-1], δ + A[i-1][j], δ + A[i][j- 1])
 Return A[m][n]

0 0 δ 2δ … (j -1)δ jδ … nδ

1 δ

2 2δ

…

i – 1 (i-1)δ

i iδ

…

m mδ

0 1 2 … j - 1 j … n

 As before, we can trace back through the table and find the
changes, insertions, and deletes

 The running time is O(mn) because the table is O(mn) and we
spend constant time on each entry

 Because we only need the previous (and current) row, we can
reduce the space to O(n), but then reconstructing the solution
becomes tricky
 The book explains how such an algorithm can be done, but we won't

focus on it

 Find the minimum cost to align:
 "anguished"
 "language"

 The cost of an insertion (or deletion) δ is 1
 The cost of replacing any letter with a different letter is 1
 The cost of "replacing" any letter with itself is 0

a n g u i s h e d

0 1 2 3 4 5 6 7 8 9

l 1

a 2

n 3

g 4

u 5

a 6

g 7

e 8

 Maximum-flow problem
 Minimum cuts

 Work on Homework 5
 Read sections 7.1 and 7.2

	COMP 4500
	Last time
	Questions?
	Assignment 5
	Logical warmup
	Back to Knapsack
	Knapsack example
	Fill in the table
	Three-sentence Summary of Sequence Alignment
	Sequence Alignment
	Edit distance between strings
	Edit distance is important
	Alignment
	Alignment cost
	Designing the algorithm
	Formulating the recurrence
	Now what?
	Alignment(X,Y)
	Table A of OPT values
	Reconstructing and run-time
	Sequence alignment example
	Fill in the table
	Quiz
	Upcoming
	Next time…
	Reminders

