
Week 9 - Friday

 What did we talk about last time?
 Subset sum
 Knapsack

 Consider the following sequence, which should be read from left
to right, starting at the top row

1
1 1
2 1

1 2 1 1
1 1 1 2 2 1

 What are the next two rows in the sequence?

 Items (wi, vi):
 (7, 9)
 (3, 4)
 (2, 3)
 (6, 2)
 (4, 5)
 (5, 7)

 Maximum weight: 10
 Create the table to find all of the optimal values that include items

1, 2,…, i for every possible weight w up to 10

i wi vi 0 1 2 3 4 5 6 7 8 9 10

0 0 0

1 7 9

2 3 4

3 2 3

4 6 2

5 4 5

6 5 7

 "long jeverdy" → "longevity"
 What is the distance?
 LONG JEVERDY
 LONG--EVI-TY

 Or what if we want no mismatches?
 LONG JEV-ERD-Y

 LONG--EVI---TY

 It can be used in a spell-checker (or auto-correct) to suggest
similar words

 There are applications in DNA analysis:
 How different is this sequence from that sequence?

 We want a general metric for handling both gaps and
mismatches

 An alignment is a list of matches between characters in strings
X and Y that doesn't cross

 Consider:
 stop-
 -tops

 This alignment is (2,1), (3,2), (4,3)

 Some optimal alignment will have the lowest cost
 Cost:
 Gap penalty δ > 0, for every gap
 Mismatch cost αpq for aligning p with q
▪ αpp is presumably 0 but does not have to be

 Total cost is the sum of the gap penalties and mismatch costs

 We always try to think backwards when doing dynamic
programming

 Let strings X and Y have length m and n, respectively
 In the optimal alignment M, either characters m and n are

matched, or they're not
 In other words, at least one of the following is true:

1. (m,n) is in M
2. The mth position of X is not matched
3. The nth position of Y is not matched

 Let OPT(i, j) be the minimum cost of an alignment of the first i
characters in X to the first j characters in Y

 In case 1, we would have to pay a matching cost of matching
the character at i to j

 In cases 2 and 3, you will pay a gap penalty

OPT 𝑖𝑖, 𝑗𝑗 = min�
𝛼𝛼𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗 + OPT 𝑖𝑖 − 1, 𝑗𝑗 − 1

𝛿𝛿 + OPT 𝑖𝑖 − 1, 𝑗𝑗
𝛿𝛿 + OPT 𝑖𝑖, 𝑗𝑗 − 1

 We do our usual thing
 Build up a table of values with m + 1 rows and n + 1 columns
 In row o, column j has value jδ to build up strings from the

empty string
 In column o, row i has value iδ to build up strings from the

empty string
 The other entries (i,j) can be computed from (i -1, j – 1), (i – 1,

j), (i, j – 1)

 Create array A[0...m][0...n]
 For i from 0 to m
 Set A[i][0]= iδ

 For j from 0 to n
 Set A[0][j]= jδ

 For i from 1 to m
 For j from 1 to n

▪ Set A[i][j]= min(𝛼𝛼𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗+A[i-1][j-1], δ + A[i-1][j], δ + A[i][j- 1])
 Return A[m][n]

0 0 δ 2δ … (j -1)δ jδ … nδ

1 δ

2 2δ

…

i – 1 (i-1)δ

i iδ

…

m mδ

0 1 2 … j - 1 j … n

 As before, we can trace back through the table and find the
changes, insertions, and deletes

 The running time is O(mn) because the table is O(mn) and we
spend constant time on each entry

 Because we only need the previous (and current) row, we can
reduce the space to O(n), but then reconstructing the solution
becomes tricky
 The book explains how such an algorithm can be done, but we won't

focus on it

 Find the minimum cost to align:
 "anguished"
 "language"

 The cost of an insertion (or deletion) δ is 1
 The cost of replacing any letter with a different letter is 1
 The cost of "replacing" any letter with itself is 0

a n g u i s h e d

0 1 2 3 4 5 6 7 8 9

l 1

a 2

n 3

g 4

u 5

a 6

g 7

e 8

 Maximum-flow problem
 Minimum cuts

 Work on Homework 5
 Read sections 7.1 and 7.2

	COMP 4500
	Last time
	Questions?
	Assignment 5
	Logical warmup
	Back to Knapsack
	Knapsack example
	Fill in the table
	Three-sentence Summary of Sequence Alignment
	Sequence Alignment
	Edit distance between strings
	Edit distance is important
	Alignment
	Alignment cost
	Designing the algorithm
	Formulating the recurrence
	Now what?
	Alignment(X,Y)
	Table A of OPT values
	Reconstructing and run-time
	Sequence alignment example
	Fill in the table
	Quiz
	Upcoming
	Next time…
	Reminders

